Erratum/Addendum for Topics in Spectral Geometry, preliminary online version dated May 29, 2023

Michael Levitin, Dan Mangoubi, and Iosif Polterovich
December 2, 2023
deen detes entries added in this version of Erratum/Addendum

$\omega \chi$ ERRATUM

p. 13, line 3: replace "rises" by "raises"
p. 36, line 4 of the paragraph directly above the heading of $\$ \mathbf{2 . 1 . 2}$: replace "compact" by "closed"
p.40, formula (2.I.6): in the second integral, replace " $\mathrm{d} \sigma$ " by " $\mathrm{d} s$ "
${ }^{\circ 88}$ p. 39, line following (2.1.5): remove the word from "that for for"
p. 76, line -3: remove the word from "real domain analyticity"
p. 81, first line of Exercise 3.2.14(iii): replace "disjoined" by "disjoint"
p. 141, second line of the second paragraph: replace "has led" by 'have led"
p. 153, first line after the statement of Theorem 5.I.4: replace "have measure" by "has measure"
p. 238, two lines above formula (7.1.15): replace " $L\left(\Omega_{k}\right)$ " by " $L\left(\partial \Omega_{k}\right)$ "
p. 238, formula (7.1.15): replace " $L(\Omega)$ " by " $L(\partial \Omega)$ "
(19) p. 256, line-I: replace "Exercise 7.3.6(iv)" by "Exercise 7.3.6(iii)"
p. 260, third line above Theorem 7.3.8: replace"(7.3.8), and (7.3.8) imply" by "(7.3.8), and (7.3.9) imply"
p. 266, fourth line of Exercise 7.3.15: replace "Figure 7.2" by "Figure 7.3"
p. 266, Exercise 7.4.3 replace the first displayed formula by

$$
\begin{cases}\frac{\sqrt{-\Lambda} I_{0}^{\prime}(\sqrt{-\Lambda})}{I_{0}(\sqrt{-\Lambda})}, & \text { if } \Lambda<0 \\ 0, & \text { if } \Lambda=0 \\ \frac{\sqrt{\Lambda} J_{0}^{\prime}(\sqrt{\Lambda})}{J_{0}(\sqrt{\Lambda})}, & \text { if } \Lambda>0\end{cases}
$$

and replace the second displayed formula by

$$
\left\{\begin{array}{ll}
\frac{\sqrt{-\Lambda} I_{m}^{\prime}(\sqrt{-\Lambda})}{I_{m}(\sqrt{-\Lambda})}, & \text { if } \Lambda<0 \\
m, & \text { if } \Lambda=0, \\
\frac{\sqrt{\Lambda} J_{m}^{\prime}(\sqrt{\Lambda})}{J_{m}(\sqrt{\Lambda})}, & \text { if } \Lambda>0
\end{array} \quad m \in \mathbb{N}\right.
$$

p. 277, first line of Remark 7.4.14: replace "Theorem 7.2.II" by "Theorem 7.4.II"

Σ ADDENDUM

p. 28, two lines above Remark 1.2.I4: because an issue with the preprint [BouWatı7] became known in July 2023, the best existing upper bound for $R(\lambda)$ has exponent $\frac{131}{416}+\varepsilon$ [M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. (3) 87 (2003), 591-609]
p. 68, above Exercise 3.I.6: on reflection, the phrase "Proposition 3.I. 3 follows immediately" is somewhat misleading. Therefore, for methodological purposes, we extend the argument outlining the proof of Proposition 3.I.3. Let $\mathscr{E}_{k}:=\operatorname{Span}\left\{u_{k}, u_{k+1}, \ldots\right\}$. Then $R[u] \geq \lambda_{k}$ for any $u \in \mathscr{E}_{k} \backslash\{0\}$. If we now consider an arbitrary $\mathscr{L} \subset \operatorname{Dom}(\mathscr{Q})$ with $\operatorname{dim} \mathscr{L}=k$, then there exists $u \in \mathscr{E}_{k} \cap \mathscr{L} \backslash\{0\}$ (since the codimension of \mathscr{E}_{k} is $k-1$), and therefore

$$
\max _{u \in \mathscr{L} \backslash\{0\}} R[u] \geq \lambda_{k}
$$

On the other hand, the equality is attained if we take $\mathscr{L}=\operatorname{Span}\left\{u_{1}, \ldots, u_{k}\right\}$.
${ }^{1888}$ p. 317, reference [ColGGS22]: add bibliographical data, Rev. Mat. Complut. (2023). doi: 10.1007/SI3163-023-00480-3.
(18) p. 319, reference [FilLPS23]: add full bibliographical data, Invent. Math. 234 (2023), i29169. doi: Io.IOO7/soo222-023-OII98-I
p. 324, reference [KarLagPol22]: add full bibliographical data, Arch. Rational Mech. Anal. 47 (2023), article no. 77. doi: Io.1007/so0205-023-01912-6
${ }^{48}$ p. 331, reference [Ros22b]: add full bibliographical data, Math. Z. 305 (2023), article 62. doi: Io.IO07/s00209-023-03382-8

